Low cytoplasmic pH inhibits endocytosis and transport from the trans- Golgi network to the cell surface
نویسندگان
چکیده
A fibroblast mutant cell line lacking the Na+/H+ antiporter was used to study the influence of low cytoplasmic pH on membrane transport in the endocytic and exocytic pathways. After being loaded with protons, the mutant cells were acidified at pH 6.2 to 6.8 for 20 min while the parent cells regulated their pH within 1 min. Cytoplasmic acidification did not affect the level of intracellular ATP or the number of clathrin-coated pits at the cell surface. However, cytosolic acidification below pH 6.8 blocked the uptake of two fluid phase markers, Lucifer Yellow and horseradish peroxidase, as well as the internalization and the recycling of transferrin. When the cytoplasmic pH was reversed to physiological values, both fluid phase endocytosis and receptor-mediated endocytosis resumed with identical kinetics. Low cytoplasmic pH also inhibited the rate of intracellular transport from the Golgi complex to the plasma membrane. This was shown in cells infected by the temperature-sensitive mutant ts 045 of the vesicular stomatitis virus (VSV) using as a marker of transport the mutated viral membrane glycoprotein (VSV-G protein). The VSV-G protein was accumulated in the trans-Golgi network (TGN) by an incubation at 19.5 degrees C and was transported to the cell surface upon shifting the temperature to 31 degrees C. This transport was arrested in acidified cells maintained at low cytosolic pH and resumed during the recovery phase of the cytosolic pH. Electron microscopy performed on epon and cryo-sections of mutant cells acidified below pH 6.8 showed that the VSV-G protein was present in the TGN. These results indicate that acidification of the cytosol to a pH less than 6.8 inhibits reversibly membrane transport in both endocytic and exocytic pathways. In all likelihood, the clathrin and nonclathrin coated vesicles that are involved in endo- and exocytosis cannot pinch off from the cell surface or from the TGN below this critical value of internal pH.
منابع مشابه
Cytoplasmic determinants involved in direct lysosomal sorting, endocytosis, and basolateral targeting of rat lgp120 (lamp-I) in MDCK cells
Rat lysosomal glycoprotein 120 (lgp120; lamp-I) is a transmembrane protein that is directly delivered from the trans-Golgi network (TGN) to the endosomal/lysosomal system without prior appearance on the cell surface. Its short cytosolic domain of 11 residues encodes determinants for direct lysosomal sorting, endocytosis and, in polarized cells, basolateral targeting. We now characterize the str...
متن کاملPhosphatidylinositol 3-kinase is not required for recycling of mannose 6-phosphate receptors from late endosomes to the trans-Golgi network.
Mannose 6-phosphate receptors carry newly synthesized lysosomal hydrolases from the trans-Golgi network to endosomes, then return to the trans-Golgi network for another round of enzyme delivery. Wortmannin, an inhibitor of phosphatidylinositol 3-kinase, interferes with the delivery of newly synthesized lysosomal enzymes to lysosomes. We used two independent assays of mannose 6-phosphate recepto...
متن کاملPhosphorylation of the cation-independent mannose 6-phosphate receptor is closely associated with its exit from the trans-Golgi network
We have previously shown that two serine residues present in two conserved regions of the bovine cation-independent mannose 6-phosphate receptor (CI-MPR) cytoplasmic domain are phosphorylated in vivo (residues 2421 and 2492 of the full length bovine CI-MPR precursor). In this study, we have used CHO cells to investigate the phosphorylation state of these two serines along the different steps of...
متن کاملAccumulation of membrane glycoproteins in lysosomes requires a tyrosine residue at a particular position in the cytoplasmic tail
Human lysosome membrane glycoprotein h-lamp-1 is a highly N-glycosylated protein found predominantly in lysosomes, with low levels present at the cell surface. The signal required for delivery of h-lamp-1 to lysosomes was investigated by analyzing the intracellular distribution of h-lamp-1 with altered amino acid sequences expressed from mutated cDNA clones. A cytoplasmic tail tyrosine residue ...
متن کاملProtein phosphatase 2A binds to the cytoplasmic tail of carboxypeptidase D and regulates post-trans-Golgi network trafficking.
Carboxypeptidase D (CPD) is a transmembrane protein that processes proteins in the trans-Golgi network (TGN). A 20-residue region within the cytoplasmic tail of CPD binds protein phosphatase 2A (PP2A). PP2A also binds to the cytoplasmic tails of other secretory pathway proteins: peptidylglycine-(amino)-amidating mono-oxygenase, the cation-independent mannose-6-phosphate receptor and TGN38. The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 108 شماره
صفحات -
تاریخ انتشار 1989